

Total number of printed pages-15

1 (Sem-1/FYUGP) MAT41MJ

2025

MATHEMATICS

(Major)

Paper : MAT4100104 MJ

(*Classical Algebra*)

Full Marks : 60

Time : 2½ hours

The figures in the margin indicate full marks for the questions.

Answer either in English or in Assamese.

1. Answer the following questions : $1 \times 8 = 8$

তলত দিয়া প্রশ্নবোৰৰ উত্তৰ দিয়া :

(a) How many different ways can a non-zero complex number be expressed in polar form ?

এটা অশূন্য জটিল সংখ্যাক ধৰ্মীয় রূপত কিমানটা ভিন্ন ধৰণে প্রকাশ কৰিব পাৰি ?

(i) Only one way

কেৱল এটা ধৰণে

(ii) Two ways

দুটা ধরণেরে

(iii) Infinitely many ways

অসীম রহ ধরণেরে

(iv) Four ways

চারি ধরণেরে

(b) For $n > 1$, the sum of all distinct n th roots of unity is _____.

$n > 1$ ব বাবে এককৰ সকলো n তম স্বতন্ত্র মূলৰ যোগফল হ'ল _____।

(c) Is the statement "The exponential and logarithmic functions are inverse to each other for all non-zero complex numbers" true or false?

"সকলো অশূন্য জটিল সংখ্যাৰ বাবে ঘাতীয় আৰু লগাৰিথমিক ফলন ইটোৱে সিটোৰ বিপৰীত" উক্তিটো সঁচা নে মিছ?

(d) If an algebraic equation is of degree n , which of the following statements is always true?

যদি বীজগাণিতীয় সমীকৰণ এটা n ঘাতৰ হয়, তেন্তে তলৰ কোনটো উক্তি সদায় সত্য?

(i) It can have at most $n - 1$ roots

ইয়াৰ সৰ্বাধিক $n - 1$ মূল থাকিব পাৰে

(ii) It has exactly n distinct real roots

ইয়াৰ ঠিক n টা পৃথক বাস্তৱ মূল আছে

(iii) It has n roots in total, real or complex

ইয়াৰ মুঠতে n টা মূল আছে, বাস্তৱ বা জটিল

(iv) It can have infinitely many roots

ইয়াৰ মূল অসীম সংখ্যক হ'ব পাৰে

(e) For a polynomial with real coefficients, the number of positive real roots is equal to the number of sign changes or less by a multiple of _____.

বাস্তৱ সহগ থকা বহুপদৰ বাবে ধনাত্মক বাস্তৱ মূলৰ সংখ্যা
চিহ্ন পৰিৱৰ্তনৰ সংখ্যাৰ সমান বা _____ ব বহুগণে
কম হয়।

(f) Which of the following statements is correct about the equation

$$x^4 + 2x^2 - 3 = 0 ?$$

সমীকৰণ $x^4 + 2x^2 - 3 = 0$ সম্পর্কে তলৰ কোনটো
উত্তি সঁচা?

(i) Cardan's method can be applied,
but Euler's method cannot

কাৰ্ডানৰ পদ্ধতি ব্যবহাৰ কৰিব পাৰি, কিন্তু আইলাৰৰ
পদ্ধতি নোৰাবি

(ii) Euler's method can be applied, but Cardan's method is not suitable

অইলাৰৰ পদ্ধতি ব্যৱহাৰ কৰিব পাৰি, কিন্তু কাৰ্ডানৰ
পদ্ধতি উপযোগী নহয়

(iii) Both Cardan's and Euler's methods can be applied

কাৰ্ডান আৰু অইলাৰৰ দুয়োটাই ব্যৱহাৰ কৰিব পাৰি

(iv) Neither method can be applied

দুয়োটা পদ্ধতি ব্যৱহাৰ কৰিব নোৱাৰিব

(g) State whether the following statement is true or false :

নিম্নলিখিত উক্তিটো সঁচা নে মিছা :

For any two 2×2 matrices A and B ,

$(A + B)^2 = A^2 + 2AB + B^2$ holds always.

যিকোনো দুটা 2×2 মৌলকক্ষ A আৰু B ৰ বাবে,

$(A + B)^2 = A^2 + 2AB + B^2$ সদায় বৈধ।

(h) A system of m linear equations in n unknowns is called inconsistent if it has :

n টা অজান সংখ্যা থকা m টা বৈধিক সমীকৰণৰ প্ৰণালী
এটা অসামঞ্জস্যপূৰ্ণ বুলি কোৱা হয় যদি :

(i) Exactly a single root satisfying all equations

সকলো সমীকৰণ পূৰণ কৰা ঠিক এটা মূল থাকে

(ii) No common root that satisfies every equation

প্ৰতিটো সমীকৰণ পূৰণ কৰা কোনো সাধাৰণ মূল
না থাকে

(iii) Multiple roots satisfying all equations simultaneously

সকলো সমীকৰণ একেলগে পূৰণ কৰা একাধিক
মূল থাকে

(iv) None of the above

ওপৰৰ কোনোটোৱেই নহয়

2. Answer **any six** questions : $2 \times 6 = 12$

যিকোনো ছুটা প্ৰশ্নৰ উত্তৰ দিয়া :

(a) Find the $\arg(z)$, where $z = -1 + i\sqrt{3}$.

$z = -1 + i\sqrt{3}$ হ'লে, $\arg(z)$ নিৰ্ণয় কৰা।

(b) Solve $x^2 + x + 1 = 0$, using the idea of n th roots of unity.

$x^2 + x + 1 = 0$ সমীকরণটো n -তম একক মূলৰ ধাৰণাৰ সহায়ত সমাধান কৰা।

(c) Find the range of $f(z) = e^z$, where z is a non-zero complex number.

z এটা অশূন্য জটিল সংখ্যা হ'লে, $f(z) = e^z$ ৰ পৰিসৰ নিৰ্ণয় কৰা।

(d) Find the general solution of $\cosh z = -2$.
 $\cosh z = -2$ ৰ সাধাৰণ সমাধান দিয়া।

(e) Using Descartes' Rule of Signs, determine the possible number of real and complex roots of the equation

$$x^4 - 3x^3 + 3x^2 - x + 2 = 0.$$

ডেকার্টৰ চিহ্ন নিয়ম ব্যৱহাৰ কৰি সমীকৰণ

$x^4 - 3x^3 + 3x^2 - x + 2 = 0$ ৰ বাস্তৱ মূল আৰু
জটিল মূলৰ সন্তাৱ্য সংখ্যা নিৰ্ণয় কৰা।

(f) If α and β are the roots of the equation $ax^2 - bx + c = 0$, express the sum and product of the roots in terms of the coefficients.

যদি α আৰু β সমীকৰণ $ax^2 - bx + c = 0$ ৰ মূল হয়, তেন্তে মূলৰ যোগফল আৰু গুণফল সহসমূহৰ দ্বাৰা প্ৰকাশ কৰা।

(g) Define symmetric functions of the roots of an equation. Give one example.

সমীকৰণ এটাৰ মূলৰ প্ৰতিসম ফলনৰ সংজ্ঞা দিয়া। এটা উদাহৰণ দিয়া।

(h) If A is a square matrix such that $A^T = -A$, what special property does A have? Explain briefly.

যদি A এটা বৰ্গ আকাৰৰ মৌলকক্ষ হয় আৰু $A^T = -A$ হয়, তেন্তে A -ৰ বিশেষ গুণটো কি? সংক্ষিপ্তভাৱে বিৱৰণ কৰা।

(i) If a square matrix A satisfies $A^2 = 0$ (the zero matrix), can A^{-1} exist? Justify your answer.

যদি এটা বৰ্গ আকাৰৰ মৌলকক্ষ A ৰ বাবে $A^2 = 0$ (শূন্য মৌলকক্ষ) হয়, তেন্তে A^{-1} অস্তিত্ব থাকিব পাৰে নেকি? উত্তৰটো যুক্তিসহ দিয়া।

(j) When does a homogeneous system of linear equations have only the trivial solution, and when does it have infinitely many solutions?

সমজাতীয় বৈধিক সমীকরণৰ প্ৰণালীৰ কেৱল শূন্য
সমাধান কেতিয়া থাকে, আৰু অসীম সংখ্যক সমাধান
কেতিয়া থাকে?

3. Answer **any two** of (a), (b), (c) and (d), 'either (e) or (f)' and 'either (g) or (h)' : $5 \times 4 = 20$

উভয় দিয়া (a), (b), (c) আৰু (d) ৰ যিকোনো দুটা (e) অথবা
(f) আৰু (g) অথবা (h) :

(a) Let z_1 and z_2 be non-zero complex numbers with principal arguments θ_1 and θ_2 . Find the principal argument of $z_1 z_2$ and explain your reasoning in detail.

ধৰা হ'ল z_1 আৰু z_2 দুটা অশূন্য জটিল সংখ্যা, যাৰ
প্ৰধান প্ৰসাৰণ θ_1 আৰু θ_2 । $z_1 z_2$ -ৰ প্ৰধান প্ৰসাৰণ
উলিওৱা আৰু যুক্তি সম্পূৰ্ণ ৰূপে ব্যাখ্যা কৰা।

(b) Let $n > 1$ be a positive integer. Find all real n -th roots of 1 for the cases when n is even and when n is odd.

ধৰা হ'ল $n > 1$ এটা ধনাত্মক পূৰ্ণসংখ্যা। n যুগ্ম সংখ্যা
আৰু n অযুগ্ম সংখ্যা হোৱা ক্ষেত্ৰত 1-ৰ সকলো বাস্তৱ
 n -তম মূলসমূহ উলিওৱা।

(c) Use De Moivre's theorem to expand $\tan(\theta_1 + \theta_2 + \dots + \theta_n)$, where $\theta_1, \dots, \theta_n$ are real, in terms of the elementary symmetric sums of $\tan \theta_i$, and state the final (highest-order) term of the numerator and denominator.

ডে মহিন্দ্র উপপাদ্য ব্যবহার করি
 $\tan(\theta_1 + \theta_2 + \dots + \theta_n)$ প্রসারণ করা, যত $\theta_1, \dots, \theta_n$ বাস্তুর সংখ্যা। ফলাফলটো $\tan \theta_i$ র মৌলিক প্রতিসম যোগফল (elementary symmetric sum) র রূপত লিখা, আৰু লৱ আৰু হৰ্ব অন্তিম (উচ্চতম ক্রমৰ) পদটো উল্লেখ কৰা।

(d) Express $\text{Log}[\text{Log}(\cos \theta + i \sin \theta)]$ ($0 < \theta < \pi$) in the form $x + iy$, where x, y are real.

$0 < \theta < \pi$ হলে, $\text{Log}[\text{Log}(\cos \theta + i \sin \theta)]$ ক $x + iy$ রূপত প্রকাশ কৰা, যত x, y বাস্তুর সংখ্যা।

(e) Solve $x^4 - x^3 + 2x^2 - x + 1 = 0$ using the condition that it has four distinct roots of equal modulus, without direct factorization.

$x^4 - x^3 + 2x^2 - x + 1 = 0$ সমাধান করা এই চতুর্থ
ব্যরহার করি যে ইয়াৰ সমান মান (modulus) ৰ চাৰিটা
স্বতন্ত্র মূল আছে, পোনপটীয়াকৈ গুণনীয়কৰণ নকৰি।

(f) If the roots of the quadratic equation $x^2 - 5x + 6 = 0$ are transformed such that each root is increased by 3, form the new quadratic equation whose roots are the transformed roots.

যদি $x^2 - 5x + 6 = 0$ সমীকৰণটোৰ মূলসমূহক এনে
ধৰণে পৰিৱৰ্তন কৰা হয় যে প্ৰতিটো মূল 3-ৰে বচোৱা
হয়, তেন্তে নতুন দিঘাত সমীকৰণটো গঠন কৰা, যাৰ
মূলসমূহ এই পৰিৱৰ্তিত মূলসমূহ।

(g) Explain whether the sets of all symmetric and all skew-symmetric matrices are each closed under matrix addition.

সকলো প্ৰতিসম (symmetric) আৰু তিৰ্যক-প্ৰতিসম
(skew-symmetric) মৌলকক্ষৰ সমষ্টিসমূহে
মৌলকক্ষৰ যোগৰ ক্ষেত্ৰত বন্ধ গুণ (closure
property) মানি চলে নে নাই ব্যাখ্যা কৰা।

(h) Find the reduced row echelon form of the following matrix and determine its rank.

নিম্নলিখিত মৌলকক্ষটোক হ্রাস শারীর ইচেলন (reduced row echelon) আকৃতিলৈ নিয়া আৰু ইয়াৰ জাতি (rank) নিৰ্ধাৰণ কৰা।

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$

4. Answer 'either (a) or (b)' and 'any one of (c), (d) and (e)': $10 \times 2 = 20$

উত্তৰ দিয়া (a) অথবা (b) আৰু (c), (d) আৰু (e) ৰ যিকোনো এটা :

(a) (i) Prove that $(\exp z)^n = \exp(nz)$ for all integers n , considering separately the cases $n > 0$, $n = 0$ and $n < 0$. 4

যিকোনো পূৰ্ণসংখ্যা n -ৰ বাবে

$(\exp z)^n = \exp(nz)$ প্ৰমাণ কৰা,
 $n > 0$, $n = 0$ আৰু $n < 0$ ক্ষেত্ৰসমূহ পৃথকে
 পৃথকে বিবেচনা কৰি।

(ii) For the cubic equation $x^3 - 4x^2 + px - q = 0$, two of its roots are 1 and $(p-2)$. Using only the relations between roots and coefficients, find the values of p and q . 6

ঘন সমীকরণ $x^3 - 4x^2 + px - q = 0$ র দুটা মূল হৈছে আৰু $(p-2)$ । কেৰল মূল আৰু সহগসমূহৰ মাজৰ সম্পর্ক ব্যৱহাৰ কৰি p আৰু q ৰ মান নিৰ্ণয় কৰা।

(b) (i) Prove that $\sinh z$, $\cosh z$ and $\tanh z$ are periodic functions, and determine the period of each. 4

$\sinh z$, $\cosh z$ আৰু $\tanh z$ সময়কালীন ফলন (periodic function) বুলি প্ৰমাণ কৰা আৰু প্ৰত্যেকৰে সময়কাল (period) নিৰ্ণয় কৰা।

(ii) Solve by Cardan's method : 6
কাৰ্ডানৰ পদ্ধতি ব্যৱহাৰ কৰি সমাধান কৰা :

$$x^3 - 6x^2 + 11x - 6 = 0.$$

(c) (ii) If $AB = I$ for square matrices A and B of the same order, prove that $B = A^{-1}$. 4

যদি একে ক্রমের বর্গ মৌলিকক্ষ A আৰু B ৰ বাবে
 $AB = I$ হয়, প্ৰমাণ কৰা যে $B = A^{-1}$ ।

(ii) Prove that the following statements
 for a square matrix A are
 equivalent : 6

প্ৰমাণ কৰা যে এটা বর্গ মৌলিকক্ষ A ৰ বাবে
 তলত দিয়া উক্তিবোৰ সমতুল্য :

- A is nonsingular.

A পৰাবৰ্তনীয় (nonsingular) হয়।

- The equation $Ax = 0$ has only
 the trivial solution.

সমীকৰণ $Ax = 0$ কেৱল তাৎপৰ্যহীন
 সমাধান (trivial solution) থাকে।

- $\det(A) \neq 0$.

A -ৰ ডিটাৰমিনেন্ট শূন্যৰ সমান নহয়।

(d) (i) Explain briefly how the augmented
 matrix of a linear system of
 equations helps in determining
 whether the system is consistent. 4

বৈধিক সমীকরণৰ এটা প্রণালীৰ বৰ্ধিত মৌলিকক্ষটি (augmented matrix) কেনেদৰে সেই প্রণালীটো সামঞ্জস্যপূর্ণ (consistent) হয় নে নহয় নিৰ্ণয় কৰাত সহায় কৰে চমুকৈ ব্যাখ্যা কৰা।

(ii) Test the consistency of the following system of equations and solve if it is consistent. 6

নিম্নলিখিত সমীকরণ প্রণালীৰ সামঞ্জস্যতা পৰীক্ষা কৰা আৰু ই সামঞ্জস্যপূর্ণ হলে সমাধান কৰা :

$$\begin{aligned} x + y + z &= 6, \\ 2x + 3y + z &= 10, \\ x + 2y + 2z &= 8. \end{aligned}$$

(e) (i) For a homogeneous system $Ax = 0$, explain how the number of free variables in the reduced matrix relates to the number of possible solutions. 4

বৈধিক সমীকরণৰ এক সমজাতীয় প্রণালী $Ax = 0$ ৰ ক্ষেত্ৰত, হ্রাসিত মৌলিকক্ষৰ মুক্ত চলকৰ সংখ্যা সম্ভাৱ্য সমাধানৰ সংখ্যাৰ সৈতে কেনেকৈ জড়িত সেই বিষয়ে ব্যাখ্যা কৰা।

(ii) Determine all solutions of the following homogeneous system :

6

নিম্নলিখিত সর্বজাতীয় প্রণালীটোর সকলো সমাধান
নির্ধারণ করা :

$$x + 2y - z = 0,$$

$$2x + 5y - 3z = 0,$$

$$3x + 8y - 5z = 0.$$